lunes, 17 𝚍𝚎 febrero 𝚍𝚎 2020

Errores que las empresas cometen en lo referente a Machine Learning

Inicio Negocio Errores que las empresas cometen en lo referente a Machine Learning

Según los analistas de la industria, dos fuerzas están impulsando un aumento en el uso de la tecnología basada en Machine Learning y otras tecnologías que permiten la Inteligencia Artificial: el asombroso crecimiento del contenido no estructurado y el uso de la automatización robótica de procesos (RPA) para automatizar los procesos (valga la redundancia)relacionados con el contenido.

El aprendizaje automático como solución, pero con cabeza.

Cognilytica dice que entre documentos, imágenes, correos electrónicos, datos en línea y vídeos, hasta el 90% del contenido de la empresa está en forma de datos no estructurados, lo cual crece a un ritmo de un 55% a 65% cada año.

En consecuencia, Everest Group Research dice que las tecnologías de automatización inteligente están usando ML donde RPA se cruza e interactúa con los procesos relacionados con el contenido. El desarrollo de tecnologías de ML ha dado lugar a la capacidad de extraer más información e inteligencia de la amplia gama de contenido de la empresa, ya sea estructurada o no.

El Machine Learning se refiere al software que permite a las máquinas «aprender» de forma supervisada y no supervisada, mejorando la precisión y el rendimiento. En un proceso que implica capturar documentos y procesarlos con RPA, el ML y otras tecnologías similares de IA aprenden de miles de variantes.

No obstante, el Director de Innovación de ABBYY cree que las empresas están cometiendo algunos errores comunes al trabajar con soluciones de Machine Learning. Los resumimos a continuación.

Capacidades de ML muy complejas

Las compañías se arriesgan a trabajar con herramientas ML que requieren una gran cantidad de datos para capacitarse en los casos de uso de contenido no estructurado más básicos. En una expresión más mundana: matan moscas a cañonazos. Hay que utilizar las herramientas de ML que estén probadas y que contengan algoritmos avanzados que puedan ser entrenados usando un pequeño conjunto de datos y puedan ejecutarse e plena producción en sólo unas pocas horas, en lugar de necesitar cientos de miles de documentos en un conjunto de muestras para poner en marcha un proyecto, lo que nos restará necesariamente mucho más tiempo.

Confiar demasiado en RPA

RPA es aclamado por aumentar la eficiencia mediante la conexión a sistemas antiguos y fuentes de datos externas. Se puede implementar rápidamente y sus «trabajadores digitales» son fáciles de configurar, y una vez «encendidos», realizan el trabajo como los humanos. La gran diferencia entre esta tecnología y ML, es que RPA se centra en el trabajo estructurado repetitivo, mientras que ML está diseñado para comprender contenido ya sea estructurado como no estructurado. RPA necesita de ML para brindar Inteligencia de contenido a sus trabajadores digitales, dándoles las habilidades cognitivas para extraer información útil y obtener inteligencia, aprender de diversas formas de contenido, derivar el significado y la intención de los documentos y agregar capacidades de toma de decisiones.

Perder oportunidades de mercado de alto valor

Por lo general, una empresa depende de la sabiduría convencional y seleccionará una tarea que ocurre con mayor frecuencia porque tiene la apariencia de ofrecer excelentes resultados. Sin embargo, este enfoque ad hoc para la selección de procesos puede hacer que ignoremos otras oportunidades comerciales conducentes a mejores resultados. Si bien es completamente aceptable comenzar en áreas que tienen la menor cantidad de interrupciones para la organización o la interacción con los usuarios finales, debemos tener en cuenta en qué puede ayudarnos el ML de una manera rápida y fácil para toda la empresa.

No saber dónde aplicar ML

Finalmente y relacionado con el punto segundo, al comenzar un proyecto de automatización, los procesos correctos para comenzar no siempre se seleccionan. Esto se debe a que muchas empresas están compartimentadas en el conocimiento del proceso organizacional. Además, la alta gerencia no suele estar involucrada en el workflow diario y carece de documentación del proceso, lo que hace cada vez más dificil descubrir realmente qué procesos están listos para la automatización. Si antes del proceso sabemos esto, si sabemos dónde vamos a aplicar ML y RPA y para qué, evitaremos este problema y aplicaremos bien estas tecnologías.

Los comentarios están desactivados

Actualmente estamos preparando el sistema de comentarios de CloudMasters. En breve activaremos los comentarios. Disculpe las molestias

Debes leer sobre...

Check Point detecta dos fallos de seguridad en la nube de Microsoft Azure

Los investigadores de seguridad de Check Point detectaron dos fallos de seguridad en Microsoft Azure que podrían haber permitido a los hackers...

Cisco WebEx utilizará herramientas de voz para explotar la «próxima frontera» de la información de datos

Las herramientas de traducción y transcripción que se están introduciendo son ya compatibles con la IA y el Machine Learning.

Avast cierra la unidad Jumpshot debido a los problemas de privacidad

"El negocio de recolección de datos encontró estar en desacuerdo con las prioridades corporativas de Avast"CEO de Avast Avast...

Amazon se mete en un lío por los 10B$ del JEDI-Gate

A finales de Octubre del 2019 el Departamento de Defensa norteamericano adjudicó el mayor contrato de servicios Cloud a Microsoft por delante...

Alerta Organizaciones: 3 Medidas para usar de Forma Segura unidades flash USB

Heathrow fue multado con 120,000 £ por la Oficina del Comisionado de Información del Reino Unido por la pérdida...